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Abstract
Bacteria have diverse mechanisms for competition that include biosynthesis of extracellular

enzymes and antibiotic metabolites, as well as changes in community physiology, such as

biofilm formation or motility. Considered collectively, networks of competitive functions for

any organism determine success or failure in competition. How bacteria integrate different

mechanisms to optimize competitive fitness is not well studied. Here we study a model com-

petitive interaction between two soil bacteria: Bacillus subtilis and Streptomyces sp. Mg1

(S. Mg1). On an agar surface, colonies of B. subtilis suffer cellular lysis and progressive

degradation caused by S. Mg1 cultured at a distance. We identify the lytic and degradative

activity (LDA) as linearmycins, which are produced by S. Mg1 and are sufficient to cause

lysis of B. subtilis. We obtained B. subtilismutants spontaneously resistant to LDA (LDAR)

that have visibly distinctive morphology and spread across the agar surface. Every LDAR

mutant identified had a missense mutation in yfiJK, which encodes a previously uncharac-

terized two-component signaling system. We confirmed that gain-of-function alleles in yfiJK
cause a combination of LDAR, changes in colony morphology, and motility. Downstream of

yfiJK are the yfiLMN genes, which encode an ATP-binding cassette transporter. We show

that yfiLMN genes are necessary for LDA resistance. The developmental phenotypes of

LDAR mutants are genetically separable from LDA resistance, suggesting that the two com-

petitive functions are distinct, but regulated by a single two-component system. Our findings

suggest that a subpopulation of B. subtilis activate an array of defensive responses to

counter lytic stress imposed by competition. Coordinated regulation of development and

antibiotic resistance is a streamlined mechanism to promote competitive fitness of bacteria.

Author Summary

Antibiotics are one mechanism among many that bacteria use to compete with each other.
Bacteria in the environment and in host organisms likely use networks of competitive
mechanisms to survive and to shape the composition and function of diverse
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communities. In this study, we cultured two species of soil bacteria to observe the outcome
of competition and to identify competitive functions that dictate the outcome. We show
that one organism, Streptomyces sp. Mg1, produces antibiotic linearmycins that cause cel-
lular lysis and degradation of a competing colony of Bacillus subtilis. In turn, the B. subtilis
activate a resistance mechanism, either transiently or through mutation of a two-compo-
nent signaling system. Activation of the signaling system produces a suite of identified
responses, which include resistance to linearmycins, altered colony morphology that
resembles biofilms, and enhanced motility of B. subtilis. This work identifies a unified,
multifaceted survival response that is induced by a subpopulation of bacteria to escape
lethal consequences of antibiotic-mediated competition.

Introduction
Bacteria are communal organisms. As such, bacteria have mechanisms to interact with other
species that range from cooperative to antagonistic. Antibiotics are a classic example of mole-
cules produced by bacteria that probably function in shaping microbial communities due to
their bioactive function, including growth inhibitory and stimulatory activities [1–4]. The
study of antibiotics has revealed a great deal about the cellular functions they target, mecha-
nisms of resistance, and uses in treating disease. The traditional approach to discovery of anti-
biotics typically begins with extraction of metabolites from culture media, followed by direct
screening of culture extracts to identify growth inhibitory agents [5]. While this approach has
had tremendous success for antibiotic discovery, it has left great gaps in our understanding of
competitive dynamics between bacteria. Approaches to bacterial competition that rely on cul-
ture of two or more organisms together are emerging as a powerful tool to discover new bioac-
tive molecules and reimagine mechanisms of competition between diverse species of bacteria
[6,7]. For instance, microbial competitive functions include secreted enzymes, type VI secre-
tion systems, and specialized metabolism, including developmental signals and antibiotics
[1,4,8]. In addition, changes in community functions such as biofilm formation or motility are
recognized increasingly as important competitive strategies for bacteria [9,10].

Specialized metabolism and developmental functions are common features among soil bac-
teria, including the actinomycetes, bacilli, and myxobacteria [11–17]. In these bacteria, antibi-
otic production and cellular development are often intertwined and co-regulated processes,
which is thought to provide fitness benefits to the organisms [18–20]. For example, during typ-
ical development Streptomyces species differentiate and develop spores [14]. During Streptomy-
ces sporulation the substrate mycelium is cannibalized, which is thought to provide the cells
with necessary nutrients to complete sporulation [21,22]. Cannibalization of the substrate
mycelium is concurrent with production of many antibiotics, which are thought to protect the
nutrient resources from opportunistic competitors [23]. Use of simple, tractable assays of two
or more competing bacteria is one approach to identify new specialized metabolites, enzymes,
and bacterial functions that determine the outcomes of competitive interactions. Indeed, inter-
action assays reveal not only growth inhibitory metabolites, but also changes in development
and colony morphology that expose abundant and poorly understood survival mechanisms for
bacteria. Dynamic patterns of interaction based on models of competition are producing new
insights into bacterial competitive mechanisms [9,18,24–28].

As a model for competitive interactions, we use different species of Bacillus and Streptomy-
ces. This competition model has led to identification of new functions for known molecules,
including bacillaene and surfactin [18,24]. In the case of surfactin, a secreted hydrolase was
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identified from Streptomyces sp. Mg1 (S. Mg1) and shown to be a resistance mechanism that
specifically degrades surfactin and plipastatin produced by Bacillus subtilis [25]. The current
study stems from observing colonies of S. Mg1 and B. subtilis placed side by side on agar
media. In this format, cellular lysis occurs along with progressive degradation of the B. subtilis
colony [29]. Previously, imaging mass spectrometry revealed the loss of the polyglutamate
component of colony extracellular matrix in the area of lysis, indicating degradation of both
cellular and extracellular materials [30,31]. Streptomyces sp. Mg1 encodes production of many
specialized metabolites with potential to participate in lysis and degradation [32]. One gene
cluster encodes the biosynthetic enzymes for chalcomycin A, which inhibits the growth of B.
subtilis but does not cause lysis and colony degradation [29]. Here we report both the identifi-
cation of a lytic degradative activity (LDA) from S. Mg1, as well as a mechanism of resistance
to LDA for B. subtilis. We show that resistant mutants of B. subtilis have a complex phenotype,
which includes LDA resistance and visible changes in colony morphology and motility. We
show the LDA resistance and the changes in colony morphology and motility are genetically
separable functions, all regulated by a two-component system of previously unknown function.
Our results indicate that a subpopulation of B subtilis cells in a colony trigger a complex mech-
anism for competitive fitness when challenged by the streptomycete.

Results

Identification of the molecule responsible for LDA
When cultured next to S. Mg1, Bacillus subtilis colonies are progressively degraded and the
underlying cells are lysed (Fig 1A) [29]. Progressive degradation of the cells and the extracellu-
lar matrix is visible as a translucent patch that develops on a formerly opaque colony (Fig 1A,
S1 Movie). Our initial interest was to identify causes of lysis and colony degradation. To iden-
tify candidate lytic agents, we chose a direct approach to isolate S. Mg1 metabolites or enzymes
that contribute to the lytic and degradative activity (LDA). Initially, we found active material

Fig 1. Identification of linearmycin B as the causative agent of LDA. (a) When co-cultured on MYM agar, S. Mg1 (left) releases molecule(s) that cause
cellular lysis and colony degradation of B. subtilis (PDS0067) (right) at a distance. (b) We cultured B. subtilis (PDS0067) (right) alone on MYM7 agar for 24 h
before adding isolated LDA onto a filter paper disc (left) adjacent to the colony, which subsequently lysed over 48 h similarly to co-culture with S. Mg1. (c)
HPLC trace of the isolated LDA. The peak is detected by UV absorbance at 333 nm (blue). The background is shown by the 254 nm absorbing trace (red). (d)
The structure of linearmycin B. Scale bar is 5 mm.

doi:10.1371/journal.pgen.1005722.g001
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present in whole plate butanol extracts from S. Mg1 grown on agar. To improve yields and
decrease complexity of LDA extracts, we cultured S. Mg1 in liquid medium in the presence of
non-polar HP-20 resin for adsorption of metabolites. Adsorbed metabolites were eluted using
methanol to generate the crude extract. Bacillus subtilis colonies exposed to the crude extract
lysed, indicating the presence of the activity. To isolate the active agent, we fractionated the
crude extract, first using a stepwise (10%) methanol gradient followed by time-based HPLC
fractionation, and tested for active fractions (see methods for a detailed description). The Δpks
strain of B. subtilis was used for enhanced sensitivity in these assays, because the mutant is
hypersensitive to lysis in co-culture with S. Mg1 [29]. We isolated a single peak from a HPLC
fraction that caused lysis and colony degradation similar to S. Mg1 (Fig 1A and 1C). The simi-
larity between the effects of isolated LDA and a competing S. Mg1 colony suggested that lysis
and colony degradation of B. subtilismay result from the action of a single compound.

To identify the active molecule, we analyzed the HPLC-purified sample by UV absorbance
and ESI-mass spectrometry. The molecule showed strong UV absorbances at 319, 333, and 351
nm, indicative of a conjugated pentaene moiety [33]. We found that the observed mass, 1166.7
[M+H]+ (S1A Fig) and the UV absorbance profile are consistent with linearmycin B (Fig 1D),
a linear polyene antibiotic produced by Streptomyces sp. no. 30 [34,35]. We used 1D and 2D
NMR of the active sample to confirm the presence of linearmycin B. Previously reported chem-
ical shifts for linearmycin B accorded with those we obtained for the LDA sample (S1B Fig, S1
Table) [35]. The linearmycins were originally identified as a pair of compounds, linearmycin A
and B [34,35]. We examined the crude extracts and found them to also contain linearmycin A,
which is also active for lysis of B. subtilis (m/z 1140) (S2 Fig). Furthermore, the S. Mg1 genome
(GenBank Accession CP011664) [32] includes a polyketide gene cluster predicted to be respon-
sible for linearmycin biosynthesis. We tested a mutant strain, S. Mg1-Δ37, which contains a
chromosome truncation that removes the linearmycin biosynthetic cluster, and found the
mutant failed to lyse B. subtilis or produce linearmycins (S2 Fig). In a parallel study, a targeted
deletion of the acyl-transferase encoding gene in the linearmycin biosynthetic gene cluster dis-
rupts linearmycin production specifically and blocks all lytic activity from the strain (personal
communication, B. Chris Hoefler). Taken together, we conclude that S. Mg1 produces linear-
mycins, which are sufficient for LDA against B. subtilis. For simplicity, we collectively refer to
these molecules as LDA.

No mechanism is known for either growth inhibition or the lytic effect that we observe with
LDA. Linearmycin A was originally shown to inhibit growth of Escherichia coli and Staphylo-
coccus aureus in addition to three fungal species, but no antibacterial mechanism of action was
reported [35]. Structurally related polyene antibiotics include antifungal agents such as ampho-
tericin B [36], nystatin [37], and ECO-02301 [38]. Amphotericin B and nystatin inhibit fungal
growth specifically by interactions with ergosterol and the fungal plasma membrane [39–42].
However, bacterial membranes lack ergosterol, suggesting a different mechanism of action
against bacteria for LDA. Nystatin was found to induce biofilm formation by B. subtilis grown
in LB media [43], demonstrating that antifungal polyenes are biologically active in the absence
of ergosterol. The lytic activity of LDA indicates a mechanism of action for the linearmycins
that differs from nystatin. In the absence of a known target, we sought an approach to better
understand the lysis and degradation of B. subtilis.

LDA resistance caused by activation of the YfiJK two-component system
When plated next to extracts of LDA or S. Mg1 colonies, small B. subtilis colonies emerge in
the region of lysis and appear to be resistant to LDA [29]. We wanted to identify mechanisms
of resistance as an approach to better understand the lytic process caused by LDA [44]. Direct
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comparison of Δpks and wild-type strains of B. subtilis, either in culture with S. Mg1 or when
treated with LDA, showed that the Δpks strain is hypersensitive to lysis but has no other
observable phenotype in these assays [29]. Therefore as before, we used the Δpks strain of B.
subtilis for these assays, because the LDA hypersensitivity provided an expanded area of lysis in
which we could scan for potential resistant mutants. We challenged colonies of the Δpks strain
of B. subtilis with extracts from S. Mg1 cultures and observed small colonies appearing in the
degraded portion of the parent colony after lysis occurred (e.g. Fig 1B). We isolated 60 small
colonies from several lysed colonies and tested them for resistance to LDA in co-culture with S.
Mg1. The majority of the isolates lysed when cultured again with S. Mg1, indicating only tran-
sient resistance to LDA. However, ten isolates were stably resistant to LDA (LDAR), potentially
having acquired mutations leading to resistance (Fig 2A). Notably, all of the stable LDA

Fig 2. Point mutations in yfiJK are responsible for LDA resistance. (a) The parental strain of B. subtilis, Δpks (PDS0067, top), and a representative
spontaneous LDAR mutant (bottom). The colony formed by the parental strain is lysed but the mutant colony remains intact. The spontaneous LDA resistant
mutant has a distorted shape and more wrinkled surface than its parental strain. (b) Diagrams of YfiJ and YfiK. The amino acid substitutions identified in
spontaneous LDAR mutants are shown in red. The predicted conserved phosphoacceptor residues are shown in black. (c) Strains of B. subtilis deleted for
yfiJ (PDS0555) or yfiK (PDS0556) independently or yfiJK together (PDS0554) are lysed in co-culture with S. Mg1. (d) We complemented the yfiJK deletion
strain by inserting at the non-essential amyE locus either wild-type yfiJK (PDS0627) or alleles identified in spontaneous resistant strains: yfiJA152EK
(PDS0685) and yfiJKT83I (PDS0628). In co-culture with S. Mg1, wild-type yfiJK+ complement was lysed and degraded, but the strains complemented with
LDAR alleles of yfiJK were LDA resistant. The complementation strains reproducibly had a more wrinkled morphology than wild type, similar to the
spontaneous LDAR strain. All cultures place S. Mg1 on the left and B. subtilis on the right. Photographs were taken after 72 h co-incubation on MYM agar.
Scale bar is 5 mm.

doi:10.1371/journal.pgen.1005722.g002
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resistant colonies developed a rough, wrinkled colony morphology that is distinct from the
parental strain (Fig 2A). Due to a biofilm-like appearance of the LDAR colonies, we suspect the
mutations have pleiotropic effects on growth mode and development, as well as resistance to
LDA.

To identify the mutant alleles in the LDAR isolates, we sequenced six of the ten mutant
genomes and compared the sequences to the parental genome (Δpks strain). Surprisingly, all
six isolates had point mutations in either of the two genes in the yfiJK operon. In addition,
eleven non-overlapping mutations occurred in a subset of the spontaneous LDAR mutants (S2
Table). Three spontaneous LDAR mutants possessed point mutations only in yfiJ, which
prompted our focus on the yfiJK operon. Using PCR and Sanger sequencing we found that the
other four LDAR isolates also contained point mutations in yfiJ. In total, nine of ten mutations
were found in yfiJ and one in yfiK (Fig 2B, Table 1). The yfiJ gene encodes a membrane-bound
sensor histidine kinase (HK), and the yfiK gene encodes its cognate cytoplasmic response regu-
lator (RR) [45]. Together these proteins comprise a two-component system (TCS). In a canoni-
cal TCS, a HK dimer senses a signal and autophosphorylates on a conserved histidine residue
[46]. The phosphate is subsequently transferred to the cognate RR, which then effects a
response, most commonly through DNA binding and regulation of gene expression [46]. In
the case of YfiK, the effector domain is a helix-turn-helix domain that likely binds DNA to
modulate changes in gene expression [45]. A role in LDA resistance is the first indication of a
native function for this two-component system.

To determine whether LDA resistance requires active YfiJK, we deleted yfiJ and yfiK inde-
pendently, or yfiJK together, in otherwise wild-type genetic backgrounds, and co-cultured
these mutants with S. Mg1. In all three cases the mutants lysed and were indistinguishable
from wild-type B. subtilis (Fig 2C). The absence of any observable phenotype for the yfiJK dele-
tion mutations suggested that resistance arises from gain-of-function alleles that activate the
two-component system. As a test for gain-of-function alleles, we genetically complemented the
deletion strains of yfiJ or yfiJK with PCR-amplified alleles from the spontaneous LDAR strains.
Control strains complemented with native alleles were wild type with respect to lysis and col-
ony morphology (Fig 2D). Conversely, complementation with the mutant alleles caused B. sub-
tilis to be resistant to LDA when cultured with S. Mg1, and the mutants developed a more
wrinkled colony surface than wild type (Fig 2D, Table 1). Based on these observations, we

Table 1. Alleles of yfiJK identified in spontaneous LDAR mutants.

Allele Nucleotide Change Number Isolated LDA Resistance

yfiJ+ n/a n/a –

yfiJA88V C257T 1 +

yfiJA152E C455A 1 +

yfiJT164M C491T 1 +

yfiJH167Y C499T 6* +

yfiJL254P T761C 1† +

yfiJK+ n/a n/a –

yfiJKT83I C248T 1 +

Each allele is designated by the amino acid substitution. All numbering is with respect to the first amino acid or the first nucleotide of the start codon. Wild-

type alleles are included to indicate LDA sensitivity and designated with a superscript + symbol. The–symbol indicates LDA sensitivity, and the + symbol

indicates LDA resistance in co-culture with S. Mg1.

*We isolated C499T from three independent experiments.
†This resistant mutant was isolated from a transposon-mutagenized strain (see S1 Methods).

doi:10.1371/journal.pgen.1005722.t001
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concluded that each LDAR allele is likely activating YfiJK to stimulate both abnormal colony
development and LDA resistance.

We next investigated how YfiJK may relate to the mechanism of lysis and colony degrada-
tion. We considered the results of a previous microarray study to define the regulon of each
known RR in B. subtilis [47]. In that study, overexpression of yfiK repressed expression
(� 4-fold) of 29 different genes, the majority involved in amino acid biosynthesis [47]. The
reported regulon also includes skfF, which encodes the ATP-binding cassette (ABC) trans-
porter necessary for release of spore-killing factor (SKF), and iseA, a cell wall-associated pro-
tein that inhibits two major autolysins [48–50]. We hypothesized that SKF and autolysis
might be involved in linearmycin-induced lysis, and that yfiJKmay regulate the expression of
those functions. We tested sensitivity to LDA using four strains of B. subtilis. First, we tested
a strain unable to produce SKF (ΔskfA-H) to determine if the cannibalism peptide functions
as a lytic agent. Second, we tested whether a strain deficient in iseA would show enhanced
lysis in the absence of an autolysin inhibitor. Third, because iseA regulates autolysins, we
tested whether a strain deficient in production of three major autolysins (ΔlytABC ΔlytD
ΔlytF) may show diminished lysis when exposed to LDA. Fourth, we tested a strain with a
deletion of the major motility/autolysin regulator (ΔsigD) [51]. All four strains lysed when
cultured with S. Mg1, indicating that SKF and autolysis do not likely contribute to the lysis
mechanism (S3 Fig). In a parallel approach, we used transposon mutagenesis to identify
genes in B. subtilis that may cause lysis under linearmycin-induced stress. We obtained a sin-
gle, stable LDAR mutant, however LDA resistance was unlinked to the site of transposon
insertion in this strain. We sequenced the mutant genome and identified an additional point
mutation in yfiJ (yfiJL254P) (Table 1, S1 Methods). Thus, using multiple approaches to iden-
tify functions conferring LDA resistance, we have found only apparent gain-of-function
alleles in yfiJK.

LDA resistance requires YfiJK with active phosphotransfer function
Two-component signaling systems require conserved phosphoacceptor residues for activation
and downstream signaling [46]. We identified the phosphoacceptor histidine (H201) in YfiJ
and the phosphoacceptor aspartate (D54) in YfiK using multiple sequence alignment to experi-
mentally characterized TCS. Using site-directed mutagenesis we disrupted the phosphoaccep-
tor residues and created the new alleles yfiJH201N and yfiKD54A. As anticipated based on the
ΔyfiJK phenotype, both phosphoacceptor mutants were sensitive to LDA when cultured with S.

Table 2. LDA resistance requires phosphoacceptor residues.

Allele LDA Resistance

yfiJA152E +

yfiJH201N −

yfiJA152E, H201N −

yfiJKT83I +

yfiJKD54A
−

yfiJKD54A, T83I
−

yfiJA152EKD54A
−

yfiJH201NKT83I
−

The conserved phosphoacceptor residues in YfiJ (H201) and YfiK (D54) were mutated to non-

phosphorylatable residues. The + symbol indicates LDA resistance in co-culture with S. Mg1. The–symbol

indicates LDA sensitivity. All numbering is relative to the first amino acid of the YfiJ and YfiK proteins.

doi:10.1371/journal.pgen.1005722.t002
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Mg1 (Table 2). Next, we constructed new alleles that combined the phosphoacceptor disrup-
tions with substitutions found in LDAR alleles to generate the new, double mutant alleles yfi-
JA152E, H201N and yfiKD54A, T83I. When cultured with S. Mg1 these mutant strains lysed, which
confirmed the disruption of the gain-of-function LDAR phenotype in the absence of functional
a TCS (Table 2). As a final test that LDA resistance results from specific downstream signaling
of YfiJK, we constructed a pair of double mutants: (i) combining the LDAR allele yfiJA152E with
the phosphoacceptor disruption yfiKD54A and (ii) combining the phosphoacceptor disruption
yfiJH201N with the LDAR allele yfiKT83I. When these strains were cultured with S. Mg1 they
were sensitive to LDA (Table 2). These results suggest that LDA resistance is due to specific
downstream signaling of YfiJK, leading us to conclude that LDA resistance is due specifically to
activation of the TCS.

LDAR alleles show specificity for linear polyene metabolites
Amphotericin B and nystatin are cyclic polyene antifungals [36,37]. The structurally related
linear polyene, linearmycin A, is also antifungal but has also been shown to have antibacterial
activity as well [35]. We tested amphotericin B, nystatin, and ECO-02301, a polyene structur-
ally related to the linearmycins [38], for activity against B. subtilis. ECO-02301 caused lysis
similar to linearmycins, but the macrocyclic polyenes amphotericin B and nystatin were not
lytic (Fig 3). When tested against purified ECO-02301, the LDAR mutant (yfiJA152E) strain
appeared to be partially resistant in this assay (Fig 3). We next sought a quantitative measure of
the difference between LDA resistance and sensitivity to LDA and ECO-02301. First, we mea-
sured the minimum lytic concentration (MLC) for ECO-02301 using a quantitative agar diffu-
sion assay and determined that a LDAR strain of B. subtilis was 3.65-fold more resistant to
ECO-02301 (Table 3). We applied the same assay to LDA, containing both linearmycin A and
B, isolated from S. Mg1 cultures and quantified the fold difference in resistance between LDAR

and wild-type B. subtilis. The LDAR mutant was nearly ten-fold more resistant to LDA com-
pared to the sensitive strain (Table 3). The difference in relative resistance to ECO-02301 and
LDAmay be in part due to structural differences in the molecules. The synthesis of ECO-
02301 includes tailoring reactions that glycosylate the polyketide backbone and condense an
amidohydroxycyclopentenone moiety onto the terminal carboxylic acid group [38,52]. The
structural differences may affect target affinity, solubility, or other properties of the molecule,
leading to differences in overall activity.

Fig 3. LDAR alleles are specific to LDA caused by linear polyenes. Strains of B. subtilis (right) were pre-incubated for 24 h on MYM agar before exposure
to the antibiotics on filter paper discs (left). Colonies were photographed 48 hours after antibiotic exposure. Amphotericin B (500 μg/filter disc) and nystatin
(500 μg/filter disc) are not lytic to B. subtilis, which can grow around the filter paper disc. A yfiJ+ strain of B. subtilis (PDS0571) is lysed by the linear polyene
ECO-02301 (6.25 μg/filter disc) but a strain with the LDAR allele yfiJA152E (PDS0572) shows resistance to ECO-02301 at this concentration. However both
yfiJ+ and yfiJA152E strains are susceptible to daptomycin-induced lysis (250 μg/filter disk). Scale bar is 5 mm.

doi:10.1371/journal.pgen.1005722.g003
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Because polyene antibiotics typically exert their effects on the cellular membrane, we wanted
to determine if LDA resistant alleles of yfiJK provide B. subtilis with a generalizable cross resis-
tance to membrane-active antibiotics. Daptomycin is a lipopeptide antibiotic that targets the
cell membrane [39,40,53]. The killing mechanism of daptomycin is not lytic, although lysis fol-
lows prolonged exposure [54]. We found that daptomycin caused a morphologically similar
lysis and degradation of B. subtilis when spotted on a filter paper disc adjacent to a colony (Fig
3). A LDAR strain of B. subtilis also lysed when exposed to daptomycin. In comparison to the
LDA sensitive strain, the LDAR strain showed some residual opacity following lysis, suggesting
that LDAR alleles might provide cross-protection to daptomycin (Fig 3). However, we found
the MLC of daptomycin was identical between the LDA resistant and sensitive strains
(Table 3). Our results suggest that YfiJK signaling provides resistance either specifically to lin-
ear polyene molecules related to linearmycins, or commonly to the type of lytic cell damage
caused by linearmycins.

The ABC transporter YfiLMN is necessary for LDA resistance
Immediately downstream of the yfiJK operon are three genes, yfiLMN, predicted to encode an
ABC transporter [45,55]. This genetic architecture is similar to peptide-antibiotic resistance
systems previously characterized in B. subtilis and other Firmicutes [56]. In these systems, a
TCS and an ABC transporter are functionally linked and required for antibiotic resistance. We
hypothesized that YfiJK-LMN may function similarly to confer LDA resistance. Thus, we were
interested in determining if YfiLMN is necessary for LDA resistance. We engineered a strain
with all five genes, yfiJKLMN, deleted. The ΔyfiJKLMN strain was lysed in co-culture with S.
Mg1 (Fig 4). We inserted resistant alleles of yfiJK at the non-essential amyE locus to generate
strains unable to produce YfiLMN but possessing LDAR alleles of yfiJK. When cultured with S.
Mg1, these strains were sensitive to LDA (Fig 4). We then complemented the loss of yfiLMN in
these strains by inserting the yfiLMN genes, including the intergenic region between yfiK and
yfiL, at the non-essential lacA locus. A predicted terminator exists downstream of yfiK (-8.9
kcal/mol) (genolist.pasteur.fr/SubtiList) [57]. Our initial yfiLMN complementation construct
included sequence immediately downstream of the terminator. However, this construct failed
to complement the loss of resistance (S4 Fig). Upon further investigation, we found no recog-
nizable promoter elements in the intergenic region between the yfiK terminator and yfiL (143
bps). We hypothesized that yfiJKLMNmay constitute a single operon with some level of termi-
nator read-through resulting in yfiLMN expression. To circumvent the lack of an independent
promoter, we placed the expression of yfiLMN under a constitutive Pspac(c) promoter and
inserted these constructs at the non-essential yhdG locus [58]. Under constitutive expression,
the yfiLMN-complementation strains were LDA resistant, showing only minimal lysis in co-
culture with S. Mg1 (Fig 4). This effect was observed even in a strain complemented with wild-
type yfiJK and in a strain lacking yfiJK entirely. These results demonstrate that YfiLMN is

Table 3. Minimum lytic concentrations.

Antibiotic yfiJ+ MLC (μg/mL) yfiJA152E MLC (μg/mL) Fold Difference (yfiJA152E/yfiJ+)

Daptomycin 32.74 32.68 0.99

ECO-02301 0.40 1.46 3.65

LDA* ND† ND 9.58

*Linearmycins A and B extracted from S. Mg1 cultures.
†ND, not determined.

doi:10.1371/journal.pgen.1005722.t003
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necessary for LDA resistance, and that constitutive expression bypasses the need for YfiJK. We
speculate that YfiLMN either removes linearmycins from B. subtilis cells to provide resistance,
or alternatively, functions in cell envelope processes or regulatory functions that control LDA
resistance. Determining the mechanism of YfiLMN-mediated LDA resistance will require fur-
ther investigation.

Intersection of colony developmental phenotypes and LDA resistance in
LDAR strains
In our study of the different LDAR alleles, we observed some variation in the degree of wrin-
kled, motile phenotype in competition with S. Mg1 or under LDA exposure. To separate effects
of the competitor from inherent LDAR phenotypes, we plated colonies of LDAR strains in isola-
tion to view morphological features. All of the yfiJKmutant strains displayed a pattern of
increased colony wrinkling and spreading across the agar surface and were distinct from the
wild-type strain (Fig 5). We asked if differences in LDAR morphology would be visible on the
biofilm-inducing medium, MSgg [59]. The mutant B. subtilis colonies developed a wrinkled
appearance similar to wild type, indicating that traditional biofilm morphology and develop-
ment are not disrupted in the mutant strains (Fig 5). We also noted that B. subtilis strains,
either wild type or ΔyfiJ, formed smooth colonies in the absence of S. Mg1 when grown on rich
media (Fig 5). In contrast, the same B. subtilis colonies in competition assays tend so show a
somewhat wrinkled morphology, regardless of the yfiJK alleles present. Thus, the morphology

Fig 4. The ABC transporter YfiLMN is necessary for LDA resistance. (a) Strains with deletions of
yfiJKLMN from B. subtilis (PDS0653) and yfiJK alleles inserted at the amyE locus as labeled on the right:
yfiJK+ (PDS0658), yfiJA152EK (PDS0686), or yfiJKT83I (PDS0660). When cultured with S. Mg1, all B. subtilis
ΔyfiLMN strains were lysed including those with a LDAR allele of yfiJK. (b) Strains with the alleles of yfiJK as
shown in (a), but containing Pspac(c)-yfiLMN inserted at the yhdG locus. All strains were resistant to LDA from
S. Mg1 with minimal lysis visible next to the S. Mg1 colony. LDA resistance was observed in a strain lacking
yfiJK (PDS0718), a strain with yfiJK+ (PDS0719), and in strains with LDAR alleles yfiJA152EK (PDS0720) and
yfiJKT83I (PDS0721). All cultures place S. Mg1 on the left and B. subtilis on the right. The cultures were
photographed after 72 hours co-incubation on MYM agar plates. All images represent triplicate samples.
Scale bar is 5 mm.

doi:10.1371/journal.pgen.1005722.g004
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of the B. subtilis colonies appears to be influenced by a combination of both the LDA alleles
and the presence of the competitor species.

To directly compare colony morphology in isolation and with the competitor, the wild type
and LDAR strains were cultured at different distances to S. Mg1. We inoculated colonies of
LDAR B. subtilis and S. Mg1 in a perpendicular, cross-wise pattern on 1.5% agar MYMmedium
to provide a format for increasing distances between colonies of each species (Fig 6). The
growth of B. subtilis with the wild-type yfiJ allele showed smooth colony formation with lysis
proximal to the S. Mg1. In contrast, the B. subtilis strain with the yfiJA152E allele revealed differ-
ent effects based on its proximity to S. Mg1 (Fig 6). The LDAR colonies distant from S. Mg1
had the expected wrinkled morphology and spreading outgrowths, as was observed when cul-
tured in isolation (Fig 5). However, the S. Mg1-proximal colonies were morphologically differ-
ent with a flattened surface and more uniform spreading pattern. The observed changes in
colony morphology associated with LDAR suggest that the YfiJK TCS regulates both specific
resistance and developmental functions that coordinate a survival response to the competitor
species.

LDAR and colony morphology phenotypes are genetically separable
To gain insight into possible connections between colony phenotypes and resistance to lysis,
we considered that changes to extracellular matrix (ECM), the associated biofilm-like colony
morphology, and changes in motility, may be responsible for LDA resistance [10,60]. For
instance, the ECMmay impede access of linearmycins to their target, possibly through over-
production of EPS or other matrix components [60]. To test whether LDA resistance is depen-
dent on known components of biofilm ECM, we sought to separate the two processes. We
generated an ECM-defective strain, which was unable to produce exopolysaccharide (EPS) due
to an epsH deletion [59], in an otherwise LDA resistant background (yfiJA152E). This strain
developed as a flat, mucoid colony, but remained LDA resistant in co-culture with S. Mg1 (Fig
7). Based on this result, we concluded that, while EPS production is necessary for the wrinkled
colony morphology, intact biofilm matrix in the LDAR strains is not responsible for the LDA
resistance mechanism. However, LDA resistance may require other biofilm matrix components
[61]. We asked whether hyperactivation of biofilm production would mimic the LDA resis-
tance phenotype. We deleted the gene encoding sinR, the master biofilm repressor [62], in a
LDA sensitive strain. When sinR is deleted, B. subtilis overproduces biofilm matrix and the

Fig 5. LDAR mutants display aberrant wrinkledmorphology.Representative colonies of B. subtiliswith LDAR alleles yfiJA88V (PDS0575), yfiJA152E

(PDS0572), yfiJT164M (PDS0573), and yfiJH167Y (PDS0574) show architecturally complex colonies on MYM, while wild type (PDS0066), Δpks (PDS0067),
and ΔyfiJ (PDS0555) do not (top panels). The LDAR colonies show both biofilm-like morphology and motile outgrowths at the colony periphery. When
cultured on MSgg media, the LDAR mutant strains develop biofilm colony morphology similar to control strains (lower panels). The Δpks yfiJA152E strain is a
representative spontaneous LDAR mutant. All photographs were taken after 72 h. Scale bar is 5 mm.

doi:10.1371/journal.pgen.1005722.g005
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colonies grow with a profoundly wrinkled appearance [62]. If biofilm formation is responsible
for LDA resistance, then a ΔsinRmutant should be resistant in co-culture with S. Mg1. How-
ever, the ΔsinR strain was sensitive to lysis (Fig 7). LDA resistance was observed in a ΔsinR
strain only in the presence of the mutant yfiJ (yfiJA152E).

Biofilm formation is controlled not only by SinR but also by the TCS DegSU. This TCS is
responsible for control of the production of biofilm extracellular matrix components. Among
these components are BslA and γ-poly-DL-glutamate (γ-PGA) [63–65]. To test if matrix func-
tions provided by DegU may contribute to LDA resistance, we deleted degU in a LDA resistant
background (yfiJA152E) and cultured the strain with S. Mg1. This mutant developed as a flat col-
ony that was LDA resistant, suggesting that resistance to LDA does not require functions pro-
vided by DegU (Fig 6). Based on this finding and our SinR and EpsH experiments, we
conclude that the changes in colony morphology of LDAR mutants are not the principle cause
of LDA resistance.

In addition to wrinkled colony morphology, the enhanced motility of LDAR strains may be
linked to resistance. For instance, swarming motility has been associated with elevated antibi-
otic resistance in multiple bacteria [10]. Previously, we observed lysis in a ΔsigD strain, which
is deficient in swarming and autolysin production [51,66,67] (S3 Fig). We tested whether a
ΔsigD, yfiJA152E double mutant strain would undergo lysis despite the presence of the LDAR

allele (Fig 7). This strain maintained both LDA resistance and morphological changes,

Fig 6. LDAR mutants display a visible response to S. Mg1 in addition to inherent colony phenotypes.
Wild type and LDAR mutants were spotted in a perpendicular pattern, cross-wise to each other- B. subtilis
(vertical) and S. Mg1 (horizontal). (Left) Strains of B. subtiliswith yfiJ+ (PDS0571) have flat, immotile
colonies. Proximal to S. Mg1, the colonies are lysed and degraded. (Right) Strains of B. subtiliswith the LDAR

allele yfiJA152E (PDS0572) develop heterogeneous colonies, having wrinkled surfaces and motile outgrowths.
Notably, the colonies of yfiJA152E B. subtilis near S. Mg1 have a distinctive spreading morphology. Plates
were photographed after 96 hours co-incubation on MYM + 1.5% agar. Plates represent duplicate
experiments.

doi:10.1371/journal.pgen.1005722.g006
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including colony spreading. The spreading phenotype in the absence of sigD is consistent with
LDAR mutants exhibiting sliding motility when cultured with S. Mg1 [68]. In sum, the com-
bined phenotypes of LDAR support a model wherein activation of YfiJK leads to LDA resis-
tance through YfiLMN activation coordinated with separable changes in colony motility and
morphology that promote survival during competition.

Genes identified by differential expression in a LDAR strain
In an effort to identify a regulatory network for YfiJK, we sought to identify genes differentially
expressed in a LDAR mutant that may contribute to colony phenotypes. To perform differential
expression analysis, we isolated and sequenced RNA from yfiJK+ (PDS0627) and yfiJA152EK
(PDS0685) strains cultured on agar plates. In our analysis, we identified six genes with statisti-
cally significant changes in expression between the two strains (Table 4). Expression of yfiLMN
was increased on average ~18-fold in the LDAR mutant. To corroborate this result we used

Fig 7. Colonymorphology and LDA resistance are separable phenotypes.Genes involved in biofilm
formation (epsH, sinR, and degU) and motility (sigD) were deleted from strains with either (a) yfiJ+ (PDS0571)
or (b) the LDAR allele yfiJA152E (PDS0572). In all cases, the biofilm and motility mutant strains were sensitive
to lysis with wild-type yfiJ and were resistant to lysis with yfiJA152E. All cultures place S. Mg1 on the left and B.
subtilis on the right. Colonies were photographed after 72 hours co-incubation with S. Mg1 on MYMmedium.
Images are representative of triplicate samples. Scale bar is 5 mm.

doi:10.1371/journal.pgen.1005722.g007

Table 4. Differential expression analysis between yfiJA152EK and yfiJK+.

Gene Fold Difference (yfiJA152EK/yfiJK+) FDR

yfiN 21.28 2.02−22

yfiM 19.15 1.70−20

yfiL 14.14 3.59−17

des 0.20 3.05−7

yvfR 0.15 2.54−7

yvfS 0.14 1.81−5

Differential gene expression between a yfiJ152EK strain (PDS0685) and a yfiJK+ strain (PDS0627). Fold

differences > 1 indicate increased expression in the yfiJA152EK strain relative to the yfiJK+ strain.

doi:10.1371/journal.pgen.1005722.t004
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qRT-PCR and observed a ~20-fold increase in yfiL expression from the yfiJA152EK strain (S6
Fig). We did not observe a change in expression of yfiJK in our RNA-seq experiments, which is
consistent with an additional control element between yfiK and yfiL. Three other differentially
expressed genes were all decreased in the LDAR mutant: des, which encodes a phospholipid
desaturase responsible for cold shock adaptation [69,70] and yvfRS, which encodes an ABC
transporter of unknown function [55]. Surprisingly, no genes in the eps operon or other known
biofilm-related genes were identified as differentially expressed between the LDA sensitive and
LDAR strains. Also of note, we found no correspondence between the YfiJK-regulated genes we
identified by RNA-seq and the regulon previously defined by microarray study of yfiK overex-
pression [47]. In the absence of a clear connection to established biofilm and motility functions,
the RNA-seq results suggest that the morphological changes observed in LDAR colonies may
arise directly from activation of YfiLMN function combined with repression of des (phospho-
lipid content) and yvfRS (unknown function) by an unknown mechanism. Alternatively, the
morphological changes may occur only in a subpopulation of cells insufficient to be detected
during our analysis.

YfiJK is required for transient LDA resistance and small colony formation
One of our initial goals was to identify mechanisms of resistance in an attempt to expose mech-
anistic aspects of linearmycin activity. We considered that LDA resistance may only exist
under aberrant conditions, which arise through mutations that hyperactivate the YfiJK signal-
ing system. In the absence of a clear phenotype for deletion of the genes, we sought an
approach to identify wild-type YfiJK function in colony morphology and LDA resistance. We
returned to an early observation that small colonies resistant to LDA emerge in the lysed region
of a B. subtilis colony. The majority of the isolated LDA resistant colonies isolated were only
transiently resistant (50/60). We reasoned that if the natural function of YfiJK is to provide
temporary resistance to LDA-induced damage, the emergence of transient resistance would
depend upon the function of YfiJK. Therefore, we tested 6 independent colonies, each in tripli-
cate, of wild type and ΔyfiJK versus S. Mg1 to determine if resistant colonies would emerge in
the absence of YfiJK (Figs 8 and S5). The resulting cultures showed many small colonies arising
in the lysed areas of the wild-type B. subtilis colonies. By contrast, the few small colonies
observed with the ΔyfiJK strain did not grow appreciably and lacked the morphological features
of the yfiJK+ colonies (Fig 8). This result is consistent with the natural function of YfiJK provid-
ing transient resistance to LDA-induced stress. In the case of yfiJK gain-of-function alleles, the
substitutions in YfiJK may lock the TCS into an active state wherein every cell becomes resis-
tant to LDA in contrast to the subpopulations observed among wild-type cells. Intriguingly,
the transient resistance appears in only a subset of cells in the colony. Variable antibiotic resis-
tance among a clonal population of cells has been described as heteroresistance, and is thought
to be advantageous for survival of bacteria during antibiotic treatment [71–73]. The ability to
activate YfiJK in a subset of cells may constitute a mechanism of transient heteroresistance to
linearmycins and related molecules, but defining the mechanism and limitation to a subpopu-
lation of cells will require further investigation. The observed pattern of YfiJK-dependent LDA
resistance highlights that this TCS, and possibly many TCS, may transiently serve a subset of
cells in a population during times of competitive crisis.

Discussion
In this study, we used a two-species culture model of bacterial competition to identify functions
that contribute to bacterial competitive fitness. The present study stemmed from an earlier
observation of lysis and degradation of B. subtilis colonies when cultured adjacent to S. Mg1
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[29]. Here, we first identified linearmycins, produced by S. Mg1, as the primary cause of pro-
gressive lysis and colony degradation. The culture format used for competition revealed small
B. subtilis colonies spontaneously resistant to lysis. When isolated, the resistant colonies
showed a biofilm-like appearance with increased wrinkled colony morphology and aberrant
motility. We sequenced whole genomes of the resistant colonies and identified mutations that
confer resistance. Genomic analysis revealed alleles of the yfiJK operon, which encodes a two-
component system of previously unknown function. Based on our observations, we define
yfiJK as a regulator of yfiLMN, encoding an ABC transporter, and possibly other target genes
that govern modes of colony growth and motility (Fig 9).

We show that the LDA resistance is not dependent upon known biofilm-specific functions,
suggesting that colony morphology and LDAR are separable processes, unified under YfiJK regu-
lation. Two-component systems are well established as regulators for cellular responses to envi-
ronmental stresses, including antibiotics [74,75]. The significance of the current work is the use
of model interspecies competition to reveal both the agent of aggression, linearmycins, and a
multifaceted survival response from genes with no prior functional assignment, yfiJKLMN.

Only gain-of-function mutations in yfiJK were identified in this study to cause LDA resis-
tance. The resistance alleles of yfiJK were due to missense mutations causing changes to four
regions of YfiJK: (i) the third TM helix in YfiJ, (ii) the cytoplasmic linker between the fifth TM
helix and the dimerization and histidine phosphotransfer (DHp) domain in YfiJ, (iii) the C-ter-
minal end of the DHp, and (iv) the regulator domain in YfiK. We hypothesize that each of
these amino acid substitutions are responsible for conformational changes in YfiJK, leading to
a constitutively active state. A previous study described a similar phenotype caused by point
mutations of pmrAB in Pseudomonas aeruginosa. Gain-of-function alleles in pmrB lead to
polymyxin B resistance via increased signaling through the histidine kinase [76]. We also con-
sidered an alternative mechanism, wherein point mutations in yfiJK could lead to non-cognate
interactions of YfiJ or YfiK and aberrant signal transduction [77]. However, we view this

Fig 8. Small colonies among lysed cells in wild-type but not ΔyfiJK colonies. Eighteen wild-type and
ΔyfiJK colonies of B. subtiliswere cultured with S. Mg1. Many small, potentially LDAR, colonies appeared in
the region of lysis of wild-type colonies, while few could be seen in the ΔyfiJK strain. The few small colonies
observed in the zone of lysis for ΔyfiJK did not have the morphological features of the wild-type colonies.
Note, S5 Fig shows all eighteen replicate colonies for each strain. All cultures place S. Mg1 on the left and B.
subtilis on the right. Photographs were taken after 96 hours co-incubation on MYM agar. Scale bar is 5 mm.

doi:10.1371/journal.pgen.1005722.g008

Mechanism of Escape from Lethal Bacterial Competition

PLOS Genetics | DOI:10.1371/journal.pgen.1005722 December 8, 2015 15 / 27



mechanism as unlikely because only one of the affected residues (L254) lies in the DHp
domain, which is predicted to be involved in specificity [78], and LDA resistance required the
presence of the phosphoacceptor residue in the cognate partner. Thus, we conclude that gain-
of-function alleles cause LDA resistance and changes in both colony morphology and motility,
and that the signaling is specific to YfiJK. Although the specific defects caused by each allele
will require further investigation, we note that many of the mutations we observed are respon-
sible for amino acid changes in the cytoplasmic linker of YfiJ. The cytoplasmic linker domain
of HKs has been best characterized in periplasmic-sensing histidine kinases. In these kinases,
the linker may contain conserved PAS or HAMP domains that are necessary for signal trans-
duction from the sensory machinery to the kinase domains [46,79–81]. YfiJ has neither of
these conserved domains, suggesting that the short linker in this protein is the sole signal-
transducing domain. The mutations in the yfiJ linker, through fixing the protein in activated
state, may be very informative for determining the mechanism of signal transduction via the
YfiJ intramembrane histidine kinase.

Two-component systems are commonly involved in sensing antibiotic and environmental
stress [74,75]. Among Firmicutes, a conserved mechanism for resistance to peptide antibiotics
pairs genes for two-component systems and ABC transporters [56,82,83]. The identification of
mutations in yfiJK suggests the cell envelope is the linearmycin target, based on comparison to
other TCS-ABC transporter pairs in B. subtilis [56]. Immediately downstream of yfiJK are
three genes, yfiLMN, that are predicted to encode an ABC transporter. We found that when B.
subtilis was unable to produce YfiLMN, the colonies were LDA sensitive and failed to develop

Fig 9. Model for YfiJK-LMN functions in LDA resistance and development. LDA is sensed either directly by the ABC transporter YfiLMN, similarly to the
ABC transporter BceAB and peptide antibiotics, or indirectly as membrane damage. This signal is transferred to the histidine kinase YfiJ, which then activates
YfiK via phosphorylation. YfiK~P then activates the transcription of yfiLMN and likely represses des and yvfRS, leading to LDA resistance, biofilm formation,
and motility through an unknownmechanism. These functions promote survival of B. subtilis under competitive stress. The YfiJK system differs structurally
and functionally from other TCS that control either antibiotic resistance, such as the BceRS-AB system, or development, such as the DegSU system.
Interactions between HKs and ABC transporters are shown with double-headed arrows. Hypothesized interactions of molecules with ABC transporters or
membranes are shown with dashed arrows.

doi:10.1371/journal.pgen.1005722.g009
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altered colony morphology, regardless of the presence of a LDAR allele of yfiJK. Furthermore,
expression of yfiLMN under a constitutive promoter resulted in LDA resistance, even in the
absence of yfiJK. Thus, the YfiLMN transporter is necessary and sufficient for LDA resistance.
We hypothesize that YfiLMNmay act as an exporter either for linearmycin or for cell envelope
remodeling factors that lead to LDA resistance.

We used RNA-seq to identify genes that may be regulated by YfiJK. As expected we identi-
fied that yfiLMN expression was increased in a LDAR mutant. We also identified yvfRS, encod-
ing an ABC transporter of unknown function, and des as genes downregulated by YfiJK. The
des gene encodes a fatty acid desaturase that is responsible for altering membrane fluidity in
response to cold shock [69,70]. Intriguingly, B. subtilis strains with des deletions are more sus-
ceptible to daptomycin-treatment, potentially due to their altered membrane fluidity [84].
Antifungal polyenes structurally related to linearmycins target ergosterol in fungal membranes
[39–42]. The decreased expression of des in LDAR mutants may contribute to resistance by
affecting interactions between linearmycins and the cell membrane. Characterization of the cell
envelopes of LDA sensitive and LDAR strains may provide insight into the mechanism of line-
armycin-induced lysis.

Mutants with LDAR alleles of yfiJK grow as rugose colonies that resemble some aspects of
biofilm development on rich media, which does not support traditional biofilm development.
We demonstrated that we could functionally divorce this colony morphology phenotype and
LDA resistance by expressing yfiLMN constitutively and by introducing deletions of genes spe-
cifically required for biofilm development (epsH, sinR, degU). In so doing, we found that
changes to the biofilm extracellular matrix are not responsible for resistance. LDA resistance
may be modulated by specific matrix or cell envelope modifications activated by YfiJK-LMN,
but such modifications remain to be identified. Although we found no obvious candidates in
our RNA-seq data to explain colony morphological changes, the decreased expression of des or
yvfRSmay contribute to alterations in colony development. We also observed that LDAR

mutants respond to S. Mg1 by inducing motility, whereas wild type B. subtilis colonies are
lysed. The pleiotropic phenotypes of yfiJK LDAR alleles differentiate this coupled TCS-ABC
transporter system from the BceRS-AB, PsdRS-AB, YxdJK-LM systems in B. subtilis, which
appear to be dedicated antibiotic resistance systems [56,85–88]. To our knowledge, there are
no phenotypes associated with development that have been attributed to these TCS-ABC trans-
porter pairs, suggesting that YfiJK holds a specialized role in providing specific LDA resistance
and in activating biofilm development and motility, both of which are known to increase resis-
tance to antimicrobials [10,60]. We propose that activation of YfiJK-LMN promotes competi-
tive fitness of B. subtilis by coupling a specific resistance mechanism (LDAR) with generalized-
resistance that occurs as a consequence of altered development and motility. A recent study
using strains of Pseudomonas aeruginosa demonstrates that biofilm formation is stimulated in
response to competition, as opposed to a cooperative function of different strains or cell types
[9]. The identification of YfiJK as a regulator of biofilm and motility functions is consistent
with a model wherein competition with S. Mg1 induces developmental responses, including
biofilm and colony spreading, among a subpopulation of resistant cells of B. subtilis.

Using microbial competition we assigned resistance and developmental functions to a previ-
ously uncharacterized TCS in B. subtilis. Without imposing the conditions of competition on
B. subtilis, these TCS functions may be difficult to identify, because the yfiJ, yfiK, and yfiJK dele-
tion mutants have no phenotype when compared to wild type. The B. subtilis genome encodes
36 histidine kinases and 34 response regulators [89]. The functions of at least 11 of these TCS
are currently unknown. Bacteria use these systems to sense and respond to their environment,
which include stresses and nutrient conditions, but also include other bacteria and their antag-
onistic enzymes and specialized metabolites. Many TCS of unknown function may have a role
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in the context of microbial competition, despite having no distinct phenotype under laboratory
conditions. Thus, microbial competition studies provide an effective approach to identify func-
tions for TCS and other genes that promote competitive fitness of bacteria. By expanding our
knowledge of individual competitive functions, a more comprehensive view of bacterial com-
petitive fitness will emerge.

Materials and Methods

Bacterial strains, media, and general cloning
The strains of B. subtilis we used in this study are listed in S3 Table. We cultured B. subtilis
strains at 37°C in lysogeny broth (LB) [1% tryptone (Bacto), 0.5% yeast extract (BBL), 0.5%
sodium chloride (Sigma)] or on LB agar plates [1.5% Agar (Bacto)]. We maintained Streptomy-
ces sp. Mg1 (PSK0558) as a spore stock in water at 4°C. Unless otherwise stated all co-cultures
were grown on MYM [0.4% malt extract (Bacto), 0.4% yeast extract (BBL), 0.4% D-(+)-maltose
monohydrate (Sigma)] with 2% agar (Bacto). We used chloramphenicol (5 μg/mL), kanamycin
(5 μg/mL), MLS (1 μg/mL erythromycin, 25 μg/mL lincomycin), spectinomycin (100 μg/mL),
and tetracycline (20 μg/mL) as needed. The primers we used in this study are listed in S4 Table.
We used Escherichia coli DH5α or XL-1 blue for plasmid maintenance and manipulation. We
prepared All B. subtilis genetic manipulations in either the 168 or PY79 strain background and
then transduced them to NCIB3610 using SPP1 phage transduction as previously described
[90].

LDA extraction and identification
We wetted 1 g Diaion HP-20 resin in 25 mL methanol (MeOH) followed by washes with 25
mL of water five times while shaking. Next, we removed the bulk liquid and resuspended the
resin in 250 mL of MYM. We sterilized the media and resin by autoclaving the mixture. We
inoculated cultures using 1 mL of S. Mg1 that was grown overnight (107 spores in 3% tryptone
soy broth). We cultured the S. Mg1 for 6 d at 30°C while shaking at 225 RPM in the dark. We
performed all culture growth and extractions in low ambient light, because the activity of
extracts was diminished or lost if manipulated in the light. We separated the HP-20 resin from
the bulk of the S. Mg1 by repeatedly washing the resin with water until all visible filaments
were removed. To extract resin-bound molecules, we washed the resin with successive 25 mL
volumes of MeOH until the solvent was clear. To generate our crude extract, we pooled the
washes and removed MeOH using a rotary evaporator. The crude extract was dissolved to 100
mg/mL in 50% acetonitrile (ACN) and fractionated over a C8 solid-phase extraction (SPE) col-
umn eluted with a MeOH/water stepwise gradient. We removed solvent from our fractions
using a rotary evaporator and suspended the fractions to 50 mg/mL in 50% ACN. We tested
the fractions for lytic activity against B. subtilis by spotting 10 μL on a filter paper disc adjacent
to a B. subtilis colony that had been pre-grown for 24 h and observing lysis over a period of 48
h. The 70% and 80%MeOH fractions were active in the lysis assay and pooled for further
fractionation.

Using an Agilent 1200 HPLC system, we further fractionated the active extract fractions
over a semi-preparative (10 x 250 mm, 5 μm) Phenomenex Luna C18 column and eluted with
an ACN/20 mM ammonium acetate pH 5 (NH4OAc) gradient running at 5 mL/min. The elu-
tion program was as follows: 1) 5 min at 40% ACN then 2) a gradient up to 50% ACN over 10
min then 3) a gradient up to 75% ACN over 5 min, and 4) a gradient diminishing to 40% over
5 min. We injected 35 μL of pooled active fraction per injection. We collected time based frac-
tions and tested them for lytic activity as above. Active fractions were analyzed by mass spec-
trometry using a Bruker microTOF mass spectrometer. For NMR analysis, the sample was
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dried and resuspended in 300 μL deuterated dimethylsulfoxide (DMSO-d6). We collected spec-
tra on a Bruker Avance III 500 MHz spectrometer equipped with a cryoprobe.

LDA resistant mutant isolation and whole genome sequencing
We diluted overnight cultures inoculated with a single colony of B. subtilis Δpks (PDS0067)
into 5 mL of LB at OD600 = 0.08 with no antibiotics. We cultured the cells to early stationary
phase (OD600 = 0.9–1.5) at 37°C and spotted 2 μL on MYM7 plates [as above with 100 mM
MOPS and 25 mM potassium phosphate buffer pH 7, 1.5% agar (Bacto)]. After 24 h incuba-
tion, we placed 6 mm filter paper discs next to the B. subtilis colonies and added 10 μL of
extract from S. Mg1. We returned the plates to the incubator and observed lysis and colony
degradation over the next 48 h. After incubation, small colonies were observed in the region of
lysis. We isolated 60 small colonies and passaged them on LB plates. We tested each isolate for
LDA resistance using co-culture, as described below.

LDAR mutants that were stable through passage in isolation and the parental Δpks strain
were used for whole genome sequencing. Sequencing libraries were prepared using the PCR-
free TrueSeq Kit from Illumina. 250 bp paired-end reads were sequenced using an Illumina
MiSeq. We mapped reads from the LDAR mutants onto the parental Δpks strain using MIRA
and identified mutations by consensus discrepancy between the sequences [91,92].

Construction of yfiJK and yfiJKLMN deletion mutants
We used long-flanking homology PCR to delete yfiJK and yfiJKLMN. Briefly, to delete yfiJK we
amplified the upstream sequence using primers 13 and 14, the downstream sequence using
primers 15 and 16, and the kanamycin resistance cassette from pDG780 using primers kn-fwd
and kn-rev. We mixed the three PCR products together and used primers 13 and 16 to amplify
a product, which we directly transformed into PDS0312 to generate PDS0546.

To delete yfiJKLMN we used primers 76 and 77 to amplify the upstream sequence of yfiJ
and primers 78 and 79 to amplify the downstream sequence of yfiN. We combined these frag-
ments with the kanamycin resistance cassette and amplified a product using primers 76 and
79, which we directly transformed into PDS0312 to generate PDS0652.

Complementation of yfiJ and yfiJK
To test alleles of yfiJ, we complemented the ΔyfiJ deletion. We amplified yfiJ with primers 25
and 26 from wild type and spontaneous LDAR mutants. These primers include a BamHI and
EcoRI site, which we used to clone the product into plasmid pDR183 (lacA::mls). We trans-
formed the plasmids into PDS0559 and verified insertion into the lacA locus by PCR. We
moved these constructs into PDS0555 using SPP1 phage transduction.

We tested alleles of yfiK by complementing both yfiJK together into a ΔyfiJK strain. We
complemented both genes together because yfiK is the second gene in the operon. We ampli-
fied yfiJK using primers 54 and 75 from wild-type or spontaneous LDAR mutant and the plas-
mid backbone of pDR111 (amyE::spc, without the IPTG-inducible system) using primers 59
and 74. We combined these products together using Gibson assembly [93], transformed the
plasmid into PDS0546, and verified insertion into the amyE locus by PCR. We moved these
constructs into PDS0554 using SPP1 phage transduction.

Complementation with Pspac(c)yfiLMN
To complement yfiLMN we first amplified Pspac(c) from BJH157 using primers 112 and 113.
These primers included an EcoRI and SpeI site, which we used to clone the Pspac(c) fragment

Mechanism of Escape from Lethal Bacterial Competition

PLOS Genetics | DOI:10.1371/journal.pgen.1005722 December 8, 2015 19 / 27



into pBB275 to generate pRMS1. We amplified yfiLMN using primers 120 and 121 and the
backbone of pRMS1 using primers 118 and 119. We assembled these fragments using Gibson
assembly and transformed them directly into PDS0652 to generate PDS0717.

Site-directed mutagenesis
We used primer-mediated site-directed mutagenesis to generate phosphoacceptor residue
changes. To generate yfiJH201N alleles we used primers 42 and 43. To generate yfiKD54A alleles
we used primers 50 and 51. Briefly, we PCR amplified plasmids containing yfiJ or yfiJK using
overlapping primer pairs that included a single nucleotide change, DpnI-digested the reactions,
and transformed E. coli. We isolated the plasmids and sequenced them to verify the mutation.
We used plasmids containing the mutations to transform B. subtilis as above.

Lysis co-culture assays
To observe lysis, we grew cultures of B. subtilis as above and spotted 1 μL of B. subtilis on 20
mL MYM plates. We then spotted 5 μL of a 109 spores/mL stock of S. Mg1 ~6 mm from B. sub-
tilis. These plates were incubated at 30°C and monitored every 24 h.

Motility co-culture assays
To observe the effect of yfiJ alleles on motility we used a modified version of a motility assay we
previously described [18]. We plated 2.5 μL of a 107 spores/mL stock of S. Mg1 on a 25 mL
MYM plate and incubated the plate at 30°C. After 12 h of growth, we spotted 1.5 μL of B. subti-
lis, grown as above, perpendicularly to S. Mg1, returned the plates to the 30°C incubator, and
monitored the plates every 24 h.

Measuring minimum lytic concentrations
To measure MLC values we used an agar diffusion assay. We grew cultures of a LDA sensitive
strain (PDS0571) and a LDAR strain (PDS0572) in 25 mL of MYM to OD600 = 2. When the cul-
tures reached this density, we centrifuged the cultures at 3220 x g for 5 min and resuspended
the cell pellet in half the volume to reach OD600 = 4. We mixed 1.5 mL of resuspended cells
with 4.5 mL of MYM agar (0.67%) and poured the layer over a MYM plate to generate an over-
lay with OD600 = 1 and 0.5% agar. We placed 6 mm filter paper discs onto the overlay and
added 10 μL of 2-fold serial dilutions of daptomycin, ECO-02301, and LDA to the discs. After-
wards we incubated the plates for 4 h at 30°C and then photographed the plates. We measured
haloes of lysis using ImageJ [94] and determined MLC values by plotting natural log-trans-
formed antibiotic concentrations versus the area of lysis, and calculated the intercept to deter-
mine MLC values for the lytic agents [95].

RNA-seq
We grew two independent cultures each of yfiJK+ (PDS0627) and yfiJA152EK (PDS0685) strains
as above. When the cultures reached early stationary phase we diluted them 10−3 in LB and
spread plated 100 μL on MYM plates. After 24 h we scraped the lawns of B. subtilis into RNA-
protect Bacteria Reagent (Qiagen) and isolated RNA using an RNeasy mini kit (Qiagen). We
removed trace DNA from the RNA samples using a Turbo DNA-free kit (Applied Biosystems).
The ribosomal RNA was removed from RNA samples using a Ribo-Zero rRNA Removal Kit
(Gram-Positive Bacteria) (Illumina). 50-bp single-end reads libraries were prepared using a
TruSeq Stranded Total RNA Kit (Illumina) and sequenced on an Illumina HiSeq 2500. We
mapped reads to each open reading frame (ORF) in the B. subtilis 168 genome (GenBank:
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NC_000964.3) with kallisto [96] and used edgeR [97] for differential gene expression analysis.
We filtered out lowly expressed ORFs (<1 count per million and only represented in one of the
four samples) and used trimmed mean of M-value normalization to calculate effective library
sizes before analysis [98]. We used the single-factor exact test and reported differentially
expressed genes with a false discovery rate cutoff of< 1−4 [99]. The raw reads for this experi-
ment are accessible from NCBI BioProject Accession PRJNA29593.

Quantitative RT-PCR (qRT-PCR)
We isolated RNA from PDS0627 and PDS0685 as above and preformed qRT-PCR similarly as
previously described [18]. Briefly, we used 100 ng of total RNA as template for cDNA synthesis
using a High-Capacity RNA-to-cDNA Kit (ThemoFisher Scientific). We used an SsoAdvanced
Universal SYBR Green Supermix Kit (Bio-Rad) for and preformed quantitative PCR with a
CFX96 Touch real-time PCR thermocycler (Bio-Rad). We used the following cycling parame-
ters: denaturation at 95°C for 30 s; 40 cycles of denaturation at 95°C for 15 sec, annealing at
58°C for 30 s, and extension at 72°C for 30 s; and a final melting curve from 60°C to 95°C for 6
min. We used gyrB as our reference gene. We amplified yfiL using primers q1 and q2 and gyrB
using primers gyrB qPCR-fwd and gyrB qPCR-rev (S3 Table). We ran each reaction in tripli-
cate. Using LinReg [100] we calculated primer efficiency and quantification cycle values. We
normalized yfiL abundance to gyrB and report fold difference relative to PDS0627.

Supporting Information
S1 Fig. Characterization of the molecule responsible for LDA. (a) Mass spectrum of the
isolated peak with lytic activity against B. subtilis. The prominent masses detected in the
experiment match those of linearmycin B,m/z 594.9 [M+H+Na]2+, 605.8 [M+2Na]2+ and
1167.7 [M+H]+ (b) Structure of linearmycin B with 13C NMR chemical shift assignments
obtained in DMSO-d6. Carbons are numbered linearly starting with the carbonyl carbon of
the carboxylic acid group.
(TIFF)

S2 Fig. Disruption of the linearmycin biosynthetic gene cluster abolishes LDA. The S. Mg1
wild type strain (a) and a strain with a chromosome arm deletion (Δ37) that includes the line-
armycin biosynthetic gene cluster (b) were co-cultured with B. subtilis Δpks (PDS0067) (top
left panels). Bacillus subtilis is not lysed by S. Mg1 Δ37. Extracts from each streptomycete were
spotted on filter paper discs adjacent to a B. subtilis Δpks colony (lower left panels). The B. sub-
tilis colony challenged with the S. Mg1 Δ37 extract was not lysed. The extracts were analyzed
by HPLC (right panels). Linearmycins are detected by UV absorbance at 333 nm (blue) while
the background is shown by the 254 nm absorbing trace (red). The predominant difference in
the extracts is the presence or absence of linearmycins A and B. Linearmycin A (m/z 1140) and
B (m/z 1166) identities were confirmed by mass spectrometry. Colonies were photographed
after 72 h of co-incubation or after 48 h exposure to extract. Scale bar is 5 mm.
(TIFF)

S3 Fig. Genes predicted to be repressed by YfiK are not responsible for LDA. Spore-killing
factor (SKF) and autolysis were predicted to be regulated by YfiK. Strains of B. subtilis (right)
with deletions in genes responsible for SKF biosynthesis (ΔskfA-H) (DL598), an autolysin
inhibitor (ΔiseA) (PDS0785), deletions in the major autolysin regulator σD (ΔsigD) (DS323),
and deletions in three major autolysins (ΔlytABC, ΔlytD, ΔlytF) (DS2483) were tested for resis-
tance to LDA in co-culture with S. Mg1 (left). All strains lysed similarly to wild type
(PDS0066). Cultures were photographed after 72 h co-incubation on MYM agar plates. Scale
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bar is 5 mm. These results were consistent across six replicates.
(TIFF)

S4 Fig. Complementation of yfiLMN with yfiK terminator-yfiL intergenic sequence fails to
restore LDA resistance. The yfiLMN deletion was complemented at lacA using the intergenic
sequence between the terminator downstream of yfiK and the first coding nucleotide of yfiL as
upstream sequence (143 bp). Lysis was observed in a strain lacking yfiJK (PDS0687), a strain
with yfiJK+ (PDS0688), and in strains with LDAR alleles yfiJA152EK (PDS0689) and yfiJKT83I

(PDS0690). All cultures place S. Mg1 on the left and B. subtilis on the right. Cultures were pho-
tographed after 72 h co-incubation on MYM agar plates. Scale bar is 5 mm. These results were
consistent across three replicates.
(TIFF)

S5 Fig. Small colony formation requires yfiJK.We cultured eighteen wild type (PDS0066)
and ΔyfiJK (PDS0554) colonies of B. subtilis with S. Mg1. Many small, potentially LDAR, colo-
nies appeared in the region of lysis of wild type colonies. A few small colonies appeared in the
zone of lysis of two ΔyfiJK colonies, but these did not grow similarly and lacked the morpholog-
ical features of the yfiJK+ small colonies. All cultures place S. Mg1 on the left and B. subtilis on
the right. Colonies were photographed after 96 hours co-incubation on MYM agar plates. The
scale bar is 5 mm.
(TIFF)

S6 Fig. yfiL expression is increased in a LDAR mutant. qRT-PCR was used to quantify
expression of yfiL in strains with yfiJK+ (PDS0627) or yfiJA152EK (PDS0685). Expression was
normalized relative to gyrB. The fold difference relative to expression in the yfiJK+ strain is
reported. The error bars represent the standard deviation of the fold difference.
(TIFF)

S1 Table. 13C chemical shifts for linearmycin B. Spectra were collected in DMSO-d6 on a
Bruker Avance 500 MHz spectrometer equipped with a cryoprobe. Chemical shifts (δ) are
reported in ppm. Designated carbons are listed. The carbon number (C-No.) is with reference
to the numbering in S1 Fig.
(PDF)

S2 Table. Mutations in spontaneous LDAR mutants not related to yfiJK. All numbering is
with respect to the first amino acid or the first nucleotide of the start codon. �Mutations identi-
fied in the same spontaneous mutant. †Mutations identified in a transposon-mutagenized
strain.
(PDF)

S3 Table. Strains of Bacillus subtilis used in this study.
(PDF)

S4 Table. Primers used in this study.
(PDF)

S1 Methods. Transposon mutagenesis.
(PDF)

S1 Movie. Time lapse movie of lysis and degradation of B. subtilis by S. Mg1.We co-cul-
tured S. Mg1 and B. subtilis Δpks (PDS0067) on MYM agar and observed lysis and degradation
of the B. subtilis colony. We cultured the strains at 30°C for 24 h before taking time lapse
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images at ambient temperature. We took images at 10 min intervals. See Fig 1A for scale bar.
(AVI)
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